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1 Installing the Package

The MetaGxBreast package is a compendium of Breast Cancer datasets. The
package is publicly available and can be installed from Bioconductor into R
version 3.5.0 or higher.

To install the MetaGxBreast package from Bioconductor:

> if (!requireNamespace("BiocManager", quietly = TRUE))
+ install.packages("BiocManager")
> BiocManager::install("MetaGxBreast")

2 Loading Datasets

First we load the MetaGxBreast package into the workspace.
To load the packages into R and obtain some datasets, please use the

following commands:

> library(MetaGxBreast)
> esets <- MetaGxBreast::loadBreastEsets(loadString = c("CAL", "DFHCC", "DFHCC2",
+ "DFHCC3", "DUKE", "DUKE2", "EMC2"))[[1]]

This will load 7 of the 37 expression datasets. Users can modify the
parameters of the function to restrict datasets that do not meet certain
criteria for loading. Also note that loadString = "majority" will load 37 of
the 39 datasets. The larger metabric and tcga studies need to be loaded
separately by altering the loadString variable to include the string metabric
or tcga. Some example parameters are shown below:

Datasets: Retain only genes that are common across all platforms loaded
(default = FALSE)

Datasets: Retain studies with a minimum sample size (default = 0)

Datasets: Retain studies with a minimum umber of genes (default = 0)

Datasets: Retain studies with a minimum number of survival events (de-
fault = 0)

Datasets: Remove duplicate samples (default = TRUE)
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3 Obtaining Sample Counts in Datasets

To obtain the number of samples per dataset, run the following:

> library(Biobase)
> numSamples <- vapply(seq_along(esets), FUN=function(i, esets){
+ length(sampleNames(esets[[i]]))
+ }, numeric(1), esets=esets)
> SampleNumberSummaryAll <- data.frame(NumberOfSamples = numSamples,
+ row.names = names(esets))
> total <- sum(SampleNumberSummaryAll[,"NumberOfSamples"])
> SampleNumberSummaryAll <- rbind(SampleNumberSummaryAll, total)
> rownames(SampleNumberSummaryAll)[nrow(SampleNumberSummaryAll)] <- "Total"
> require(xtable)
> print(xtable(SampleNumberSummaryAll,digits = 2), floating = FALSE)

NumberOfSamples
CAL 118.00

DFHCC 115.00
DFHCC2 83.00
DFHCC3 40.00

DUKE 169.00
DUKE2 154.00
EMC2 204.00
Total 883.00

4 Assess Phenotype Data

We can also obtain a summary of the phenotype data (pData) for each ex-
pression dataset. Here, we assess the proportion of samples in every datasets
that contain a specific pData variable.

> #pData Variables
> pDataID <- c("er","pgr", "her2", "age_at_initial_pathologic_diagnosis",
+ "grade", "dmfs_days", "dmfs_status", "days_to_tumor_recurrence",
+ "recurrence_status", "days_to_death", "vital_status",
+ "sample_type", "treatment")
> pDataPercentSummaryTable <- NULL
> pDataSummaryNumbersTable <- NULL
> pDataSummaryNumbersList <- lapply(esets, function(x)
+ vapply(pDataID, function(y) sum(!is.na(pData(x)[,y])), numeric(1)))
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> pDataPercentSummaryList <- lapply(esets, function(x)
+ vapply(pDataID, function(y)
+ sum(!is.na(pData(x)[,y]))/nrow(pData(x)), numeric(1))*100)
> pDataSummaryNumbersTable <- sapply(pDataSummaryNumbersList, function(x) x)
> pDataPercentSummaryTable <- sapply(pDataPercentSummaryList, function(x) x)
> rownames(pDataSummaryNumbersTable) <- pDataID
> rownames(pDataPercentSummaryTable) <- pDataID
> colnames(pDataSummaryNumbersTable) <- names(esets)
> colnames(pDataPercentSummaryTable) <- names(esets)
> pDataSummaryNumbersTable <- rbind(pDataSummaryNumbersTable, total)
> rownames(pDataSummaryNumbersTable)[nrow(pDataSummaryNumbersTable)] <- "Total"
> # Generate a heatmap representation of the pData
> pDataPercentSummaryTable <- t(pDataPercentSummaryTable)
> pDataPercentSummaryTable <- cbind(Name=(rownames(pDataPercentSummaryTable))
+ ,pDataPercentSummaryTable)
> nba<-pDataPercentSummaryTable
> gradient_colors <- c("#ffffff","#ffffd9","#edf8b1","#c7e9b4","#7fcdbb",
+ "#41b6c4","#1d91c0","#225ea8","#253494","#081d58")
> library(lattice)
> nbamat<-as.matrix(nba)
> rownames(nbamat) <- nbamat[,1]
> nbamat <- nbamat[,-1]
> Interval <- as.numeric(c(10,20,30,40,50,60,70,80,90,100))
> levelplot(nbamat,col.regions=gradient_colors,
+ main="Available Clinical Annotation",
+ scales=list(x=list(rot=90, cex=0.5),
+ y= list(cex=0.5),key=list(cex=0.2)),
+ at=seq(from=0,to=100,length=10),
+ cex=0.2, ylab="", xlab="", lattice.options=list(),
+ colorkey=list(at=as.numeric(factor(c(seq(from=0, to=100, by=10)))),
+ labels=as.character(c( "0","10%","20%","30%", "40%","50%",
+ "60%", "70%", "80%","90%", "100%"),
+ cex=0.2,font=1,col="brown",height=1,
+ width=1.4), col=(gradient_colors)))
>
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5 Session Info

• R version 4.5.1 Patched (2025-08-23 r88802), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8,
LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
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LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

• Time zone: America/New_York

• TZcode source: system (glibc)

• Running under: Ubuntu 24.04.3 LTS

• Matrix products: default

• BLAS: /home/biocbuild/bbs-3.22-bioc/R/lib/libRblas.so

• LAPACK:
/usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0

• Base packages: base, datasets, grDevices, graphics, methods, stats,
utils

• Other packages: AnnotationHub 4.0.0, Biobase 2.70.0,
BiocFileCache 3.0.0, BiocGenerics 0.56.0, ExperimentHub 3.0.0,
MetaGxBreast 1.30.0, dbplyr 2.5.1, generics 0.1.4, lattice 0.22-7,
xtable 1.8-4

• Loaded via a namespace (and not attached): AnnotationDbi 1.72.0,
BiocManager 1.30.26, BiocVersion 3.22.0, Biostrings 2.78.0,
DBI 1.2.3, DelayedArray 0.36.0, GenomicRanges 1.62.0,
IRanges 2.44.0, KEGGREST 1.50.0, Matrix 1.7-4,
MatrixGenerics 1.22.0, R6 2.6.1, RSQLite 2.4.3, S4Arrays 1.10.0,
S4Vectors 0.48.0, Seqinfo 1.0.0, SparseArray 1.10.1,
SummarizedExperiment 1.40.0, XVector 0.50.0, abind 1.4-8, bit 4.6.0,
bit64 4.6.0-1, blob 1.2.4, cachem 1.1.0, cli 3.6.5, compiler 4.5.1,
crayon 1.5.3, curl 7.0.0, dplyr 1.1.4, fastmap 1.2.0, filelock 1.0.3,
glue 1.8.0, grid 4.5.1, httr 1.4.7, httr2 1.2.1, impute 1.84.0,
lifecycle 1.0.4, magrittr 2.0.4, matrixStats 1.5.0, memoise 2.0.1,
pillar 1.11.1, pkgconfig 2.0.3, png 0.1-8, purrr 1.1.0, rappdirs 0.3.3,
rlang 1.1.6, stats4 4.5.1, tibble 3.3.0, tidyselect 1.2.1, tools 4.5.1,
vctrs 0.6.5, withr 3.0.2, yaml 2.3.10
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